

Grossesse et obésité Regards croisés

Spécificités du suivi nutritionnel

- Alimentation équilibrée recommandée pour la population générale
 - Majoration max de 10% de l'apport énergétique min 1600 Kcal/j
- Répartition
 - Protéines ≥1g/kg/j
 - <30% lipides en évitant les saturés, 2 portions de poisson/sem, dont poisson gras, éviter les poissons prédateurs (300mg DHA)
 - 400g/j minimum de fruits et légumes
 - 25g/j minimum de fibres
- Reconnaitre les carences (FIGO):
 - Fer, iode, folates (400µg jusqu'à 12SA), calcium, vit D, vit A, vit B12 (végétarien, végan)

Chin Wan Ma et al, Lancet Diabetes Endocrinol 2016 Koletzko et al, Ann Nutr Metab, 2019

Interprétation des dosages

Pas de normes spécifiques pour la femme enceinte: interprétation prudente (grade C)

Diminution de 25-30% pour la plupart

- Hémoglobine, albumine, vitamines B9, B12, A, et D, zinc, calcium, ferritine, magnésium, PTH
- Stables
 - Sélénium, préalbumine
- Augmentation
 - vitamine E, cuivre, céruléoplasmine

Précautions de supplémentation

Mêmes schémas que pour la personne non enceinte en tenant compte des éventuels risques fœtaux d'un surdosage

Vitamine A (>10 000 unités/j) : risque tératogène

Fer (hématocrite > 39%) : risque de petit poids pour l'âge gestationnel

Protéines (> 1,6 g/kg/j) : risque de petit poids pour l'âge gestationnel

Chirurgie bariatrique

 Consultation médecin ayant une expertise en chirurgie bariatrique: préconceptionnelle ou à défaut dès le début de grossesse puis trimestrielle (accord d'experts)

- Évaluer l'état nutritionnel
- Renforcer la prise en charge: Multivitamine systématique, rechercher et corriger les carences
- Anticiper l'organisation du suivi

Alimentation recommandées pendant la grossesse après chirurgie bariatrique

- Apports protéiques > 60 g/j \rightarrow Consultation diététique
 - + reco habituelles de la femme enceinte

Spécificités concernant l'activité physique

- Activité physique modérée: 30 min /j minimum 5j/7 (NICE, ACOG)
- Réduction de :
 - Prise de poids gestationnelle
 - Césarienne
 - HTA
 - PN > 4kg
 - Hypoxie néonatale

Muktabhant et al, Cochrane 2015 Simon et al, Obes Rev 2020

Une grossesse à risque(s)?

Risques maternels

- FCS:
 - -13,6% versus 10,7% si poids normal
 - -OR: 1,31 IC 95%: 1,18-1,46
- FCS à répétition:

 –0,4% versus 0,1% si poids normal
 –OR: 3,51 кс 95%: 1,03-12,01

T2/T3

- vasculaires : HTA PE
- métaboliques : DG, D type 2
- thrombotiques

BJOG. 2019 July ; 126(8): 984-995. doi:10.1111/1471-0528.15661.

Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts

> **Pregnancy complications** Odds Ratio (95% Confidence Interval) and Population Attributabl Gestational hypertension Any pregnancy complication Gestational diabetes Pre-eclampsia 3.68 (3.45, 3.91)** 3.70 (348, 3.93)** 4.59 (4.22, 4.99)** 2.02 (1.96, 2.08)** Obesity PAR 18.6 PAR 18.5 PAR 23.4 PAR 12.5 (230.0 kg/m²) 1.87 (1.80, 1.93)** 3.31 (3.08, 3.55)** 3.20 (2.98, 3.44)** 3.97 (3.61, 4.37)** Obesity grade 1 PAR 12.5 PAR 12.0 PAR 15.5 PAR 8.2 (30.0-34.9 kg/m²) n_{cases/lotal}=6505/15181 ncasars/notal=1136/13900 n_{casars'total}=1047/13811 n_____=636/15405 2.36 (2.21, 2.51)** 4.65 (4.17, 5.20)** 4.81 (4.31, 5.37)** 5.85 (5.09, 6.73)** **Obesity** grade 2 PAR 6.1 PAR 6.3 PAR 7.9 PAR 3.7 (35.0-39.9 kg/m²) n_{cases/total}=2091/4308 neuses/total=412/3812 =410/3810 neases/total=271/4386 deases/ton 2.99 (2.68, 3.34)** 5.40 (4.47, 6.51)** 6.50 (5.4), 7.73)** 7.59 (6.14, 9.38)** **Obesity grade 3** PAR 1.7 PAR 2.4 PAR 2.9 PAR 3.5 (240.0 kg/m²) n_{cases/total}=734/1345 neases/total=139/1151 ncases/total=164/1176 n_{cases/total}=113/1357

> Maternal pre-pregnancy body mass index and gestational weight gain clinical categories and the ris

Maternal pre-pregnancy body mass index (kg/m²)

	Pregnancy complications Odds Ratio (95% Confidence Interval)										
	Any pregnancy complication	Gestational hypertension	Pre-eclampsia	Gestational diabetes	Preterm birth	Small size for gestational age	Large size for gestational age				
Low weight	1.70 (1.56, 1.85) **	3.06 (2.57, 3.66) **	3.52 (3.00, 4.14) **	4.44 (3.41, 5.77) **	1.36 (1.15, 1.62) **	0.99 (0.87, 1.12)	1.45 (1.29, 1.63) **				
(≤-1.1 SD)	n _{enses/botal} =916/2534	n _{cuscohotal} =148/2344	nciscolotal=182/2378	n _{cincshoral} =68/2577	n _{cuscolotal} =148/2957	n _{cases/total} =279/2639	n _{cincolocal} =337/2697				
Medium weight gain (-1.0 to 0.9 SD)	2.06 (1.96, 2.16) **	3.88 (3.53, 4.26)**	4.01 (3.64, 4.40) **	5.09 (4.40, 5.89) **	1.32 (1.20, 1.46) **	0.80 (0.74, 0.86) **	2.57 (2.43, 2.72) **				
	n _{cases/social} =3818/9080	n _{casesbord} =724/8208	n _{ensestoral} =695/8179	n _{ensestotal} =344/9220	n _{enses/total} =534/10807	n _{cascolotal} =810/8924	n _{enses/total} =1928/10042				
High weight	2.51 (2.31, 2.74) **	4.52 (3.86, 5.31)**	4.58 (3.90, 5.37) **	7.84 (6.38, 9.62) **	2.14 (1.86, 2.46) **	0.60 (0.51, 0.70) **	4.77 (4.35, 5.22) **				
(≥1.0 SD)	n _{enses/total} =1098/2323	n _{cuseshoral} =202/2074	n _{ensestoral} =194/2066	n _{cuscolotal} =134/2374	n _{ensestotal} =230/2820	n _{cuscolotal} =165/2085	n _{cuscetoral} =732/2652				

<u>JAMA.</u> 2017 Jun 6; 317(21): 2207–2225. Published online 2017 Jun 6. doi: <u>10.1001/jama.2017.3635</u>

Recommendations for Gestational Weight Gain During Pregnancy^a

Recommendation	Prepregnancy Weight							
	Underweight	Normal Weight	Overweight	Obese				
BMI	<18.5	18.5-24.9	25-29.9	≥30				
Total weight gain range, kg	12.5-18	11.5-16	7-11.5	5-9				
Total weight gain range, lbs	28-40	25-35	15-25	11-20				

Pendant l'accouchement

	Body mass inde	ex, n (%)		
Variable	30-39.9 kg/m ²	40-49.9 kg/m ²	≥50 kg/m²	P value ^a
Nulliparous pregnancy				
Vaginal delivery	9042 (53.2)	1331 (44.5)	94 (31.8)	<.0001
Operative vaginal delivery	1747 (10.3)	268 (9.0)	24 (8.1)	471
Primary scheduled cesarean delivery	3033 (17.8)	654 (21.9)	100 (33,8)	- 2001
Primary emergency cesarean delivery	3163 (18.6)	200 (24.6)	78 (26.4)	< .0001
Multiparous pregnancy				
Vaginal delivery	22,334 (62.5)	3690 (52.8)	421 (47.6)	< .0001
Operative vaginal delivery	1343 (3.8)	272 (3.9)	39 (4.4)	.3187
Vaginal birth after cesarean delivery	735 (2.1)	150 (2.2)	23 (2.6)	.3073
Primary scheduled cesarean delivery	1382 (3.9)	328 (4.7)	46 (5.2)	.0003
Primary emergency cesarean delivery	1400 (3.9)	323 (4.6)	49 (5.5)	.0004
Repeat scheduled cesarean delivery	8559 (23.9)	2229 (31.9)	307 (34.7)	< .0001
Totals				
Vaginal delivery	31,534 (59.5)	5053 (50.3)	517 (43.6)	< .0001
Operative vaginal delivery	3108 (5.9)	548 (5.5)	63 (5.3)	.0837
Cesarean delivery	17,653 (33.3)	4304 (42.8)	582 (49.1)	< .0001
Primary scheduled	4452 (8.4)	992 (9.9)	147 (12.4)	< .0001
Drimony omorgonov	4580 (8.6)	1067 (10.6)	127 (10 7)	< 0001

^a Cochran-Armitage χ^2 trend test.

Pendant l'accouchement

- Travail déclenché
- Accouchement instrumental
- Césarienne (OR=3 si BMI >35)
- Hémorragie du post partum

Césarienne

Recommandations (1)

CNGOF 2007 :

matériel adapté : tensiomètre / table d'examen ou lit / table d'opération / sondes d'échographie, monitoring

Recommandations (2)

HAS: 2009

Orientation des femmes

en fonction du niveau de risque

.

Prévention des Risques de la Grossesse dès le premier Trismestre . . .

Sécurisation Et Evaluation

- Evaluation chiffrée des risques
- Orientation du parcours patiente
- Suivi CHU multidisciplinaire endocrinologue / obstétricien
- Echo supplémentaires, mensuelles, niveau 2
- Maillage autour de la patiente
- Prévention :
- Kardegic 160 mg/j
- Protocole de recherche clinique

Conséquences de l'obésité maternelle sur le fœtus / nouveau-né

Prématurité

	22–27 Weeks**		28–31 Weeks		32–36 Weeks		
BMI*	n (%)	OR (95% CI)	n (%)	OR (95% CI)	n (%)	OR (95% CI)	
Normal (18.5 to -	<25)						
California	1542 (0.28)	1 (ref)	2893 (0.53)	1 (ref)	32 613 (5.97)	1 (ref)	
Sweden***	1084 (0.16)	1 (ref)	2573 (0.38)	1 (ref)	26 427 (3.90)	1 (ref)	
Overweight (25 to	o <30)						
California	1077 (0.35)	1.19 (1.10, 1.29)	1693 (0.54)	0.97 (0.91, 1.03)	18 670 (6.04)	0.97 (0.95, 0.99)	
Sweden	560 (0.21)	1.30 (1.17, 1.44)	1137 (0.43)	1.12 (1.04, 1.20)	11 001 (4.13)	1.06 (1.03, 1.08)	
Obesity I (30 to <	<35)						
California	723 (0.47)	1.61 (1.48, 1.77)	992 (0.65)	1.14 (1.06, 1.23)	10 015 (6.60)	1.05 (1.02, 1.07)	
Sweden	234 (0.29)	1.73 (1.49, 2.01)	450 (0.55)	1.42 (1.28, 1.58)	3847 (4.73)	1.20 (1.16, 1.24)	
Obesity II (35 to	<40)						
California	341 (0.55)	1.87 (1.66, 2.11)	458 (0.74)	1.32 (1.19, 1.46)	4348 (7.13)	1.14 (1.10, 1.18)	
Sweden	81 (0.33)	1.98 (1.57, 2.51)	173 (0.72)	1.85 (1.58, 2.17)	1282 (5.35)	1.35 (1.27, 1.43)	
Obesity III (40 +)						
California	213 (0.60)	1.93 (1.67, 2.23)	260 (0.73)	1.26 (1.11, 1.44)	2770 (7.87)	1.25 (1.20, 1.30)	
Sweden	38 (0.46)	2.73 (1.96, 3.80)	77 (0.93)	2.29 (1.80, 2.90)	485 (5.91)	1.49 (1.36, 1.64)	

Gould et al., Acta Paediatr 2014

Obesity and the risk of stillbirth: a population-based cohort study

Ruofan Yao, MD, MPH; Cande V. Ananth, PhD, MPH; Bo Y. Park, MPH; Leanne Pereira, MD; Lauren A. Plante, MD MPH; for the Perinatal Research Consortium

www.AJOG.org

Poids prégestationnel et macrosomie

	Experin	nental	Cont	rol	Odds Ratio		Odds Ratio Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Ra	andom, 95% Cl	-
2 Obesity vs. Normal									
Sebire 2001	5461	31276	15976	176923	9.0%	2.13 [2.06, 2.20]		•	
Jensen 2003	593	753	425	614	4.3%	1.65 [1.29, 2.11]			
Leung 2008	142	677	1694	22041	5.5%	3.19 [2.63, 3.86]			
Gilboa 2008	39	236	195	2218	2.5%	2.05 [1.41, 2.98]			
Oken 2009	59	328	135	1227	3.0%	1.77 [1.27, 2.48]			
Dietz 2009	2654	19235	4934	56718	8.8%	1.68 [1.60, 1.77]			
Joy 2009	461	3744	596	9171	7.1%	2.02 [1.78, 2.30]		+	
Kalk 2009	35	126	156	1446	2.1%	3.18 [2.08, 4.86]			
Khashan 2009	1052	15271	1648	43095	8.2%	1.86 [1.72, 2.02]		*	
Chen 2010	11	93	176	1744	1.0%	1.20 [0.62, 2.29]		- -	
Athukorala 2010	45	272	76	943	2.3%	2.26 [1.52, 3.36]			
Aydin 2010	214	1213	310	5685	5.6%	3.71 [3.08, 4.48]		-	
Margerison Zilko 2010	72	376	350	3108	3.7%	1.87 [1.41, 2.47]			
Narchi 2010	353	1266	450	3322	6.3%	2.47 [2.11, 2.89]		-	
Tabatabaei 2011	22	186	352	3488	1.9%	1.20 [0.76, 1.89]			
Liu 2011	44	342	231	3200	2.9%	1.90 [1.35, 2.68]			
Park 2011	14357	101590	23808	305295	9.1%	1.95 [1.90, 1.99]			
Hunt 2012	5953	58367	5260	89146	9.0%	1.81 [1.74, 1.88]		•	
Heude 2012	25	152	83	1172	1.7%	2.58 [1.59, 4.19]			
Jeric 2012	17	89	342	3688	1.4%	2.31 [1.35, 3.96]			
Ferraro 2012	147	699	194	2428	4.5%	3.07 [2.43, 3.87]		. →	
Subtotal (95% CI)		236291		736672	100.0%	2.11 [1.97, 2.27]		•	
Total events	31756		57391						
Heterogeneity: Tau² = 0	.01; Chi² =	186.88, c	lf= 20 (P	< 0.0000	1); I² = 89'	%			
Test for overall effect: Z	= 20.97 (P	< 0.0000	1)						Yu et al. Plos One 2013
_									
								$\frac{1}{5}$ 1 2 5 10	
							Con	trol Experimental	

Programmation: Les 1000 jours DOHaD

- Environnement
- Epigénétique
- Syndrome métabolique
- Diabète de Type 2
- > Hypertension Artérielle
- Obésité
- Maladies Cardiovasculaires...

Fig 1—Relative risks for ischaemic heart disease in men who were breast fed according to birthweight and weight at one year.

WEIGHT IN INFANCY AND DEATH FROM ISCHAEMIC HEART DISEASE

D. J. P. BARKER C. OSMOND S. J. SIMMONDS

MRC Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO9 4XY

Lancet 1989

Malformations congénitales

Registre suédois

	Cases		Controls					
Obese	No.	Total No.	No.	Total No.	Odds Ratio (95% Cl)	Lower Odds in Higher BMI	Higher Odds in Higher BMI	Weight, %
All neural tube defects								
	69	189	55	292	2.48 (1.63-3.76)			11.5
Hendricks et	41	109	32	119	1.64 (0.94-2.87)	-		6.3
Källén, ⁴⁵ 199 sona Cord	21	253	32657	489545	1.27 (0.81-1.98)			10.0
Shaw et al, ²¹ source	46	397	30	422	1.71 (1.06-2.77)		B	8.6
Waller et al, ²⁰	48	408	26	429	2.07 (1.26-3.40)			8.0
Waller et al, ⁴²	147	462	572	2813	1.83 (1.47-2.27)			42.6
Watkins et al	19	185	92	1592	1.87 (1.11-3.14)			7.4
Watkins et al, 2000	10	32	36	248	2.68 (1.17-6.12)			2.9
Werler et al, ²³ 1996	23	58	11	62	3.05 (1.32-7.04)			2.8
Heterogeneity: $ ^2 = 0.0\%$; $P = .51^{a}$; $P = .36^{b}$								
Overall (fixed-effects): P<.001	424	2093			1.87 (1.62-2.15)		•	100.0
Anencephaly								
Anderson et al, ³⁸ 2005	21	67	55	292	1.97 (1.09-3.56)			25.0
Waller et al, ²⁰ 1994	14	156	26	429	1.53 (0.78-3.01)			19.2
Waller et al, ⁴² 2007	30	141	572	2813	1.06 (0.70-1.60)	—		51.5
Watkins et al, ³⁷ 2003	3	9	36	248	2.94 (0.70-12.31)			→ 4.3
Heterogeneity: $l^2 = 27.0\%$; $P = .25^a$; $P = .75^b$								
Overall (fixed-effects): $P = .03$	68	373			1.39 (1.03-1.87)		\blacklozenge	100.0
Spina bifida							1	
Anderson et al, ³⁸ 2005	48	122	55	292	2.80 (1.75-4.46)			15.4
Källén, ⁴⁵ 1998	19	205	32659	489593	1.43 (0.89-2.29)	-		15.1
Waller et al, ²⁰ 1994	29	199	26	429	2.64 (1.51-4.62)			10.8
Waller et al, ⁴² 2007	117	321	572	2813	2.25 (1.76-2.87)		-	55.9
Watkins et al, ³⁷ 2003	6	16	36	248	3.53 (1.21-10.32)			→ 2.9
Heterogeneity: $l^2 = 25.6\%$; $P = .25^{a}$; $P = .12^{b}$								
Overall (fixed-effects): P<.001	219	863			2.24 (1.86-2.69)		\blacklozenge	100.0

Stothard, JAMA 2009

	Cases		Controls					
Obese	No.	Total No.	No.	Total No.	Odds Ratio (95% Cl)	Lower Odds in Higher BMI	Higher Odds in Higher BMI	Weight, %
Cleft lip								
Cedergren and Källén, ³² 2003	41	263	86716	630621	1.16 (0.83-1.62)	_		95.4
Watkins et al, ³⁷ 2003	2	18	36	248	0.74 (0.16-3.34)			4.6
Heterogeneity: $l^2 = 0.0\%$; $P = .57^{a}$; $P = .57^{b}$								
Overall (fixed-effects): $P = .45$	43	281			1.13 (0.82-1.57)			100.0
Cleft lip and palate								
Cedergren and Källén, ³² 2003	74	406	86683	630478	1.40 (1.09-1.80)			36.9
Waller et al, ⁴² 2007	165	757	572	2813	1.09 (0.90-1.33)	-		61.2
Watkins et al, ³⁷ 2003	4	25	36	248	1.12 (0.36-3.46)			1.9
Heterogeneity: $l^2 = 25.6\%$; $P = .31^{a}$; $P = .13^{b}$								
Overall (fixed-effects): $P = .02$	243	1188			1.20 (1.03-1.40)			100.0
Cleft palate								
Cedergren and Källén, ³² 2003	68	407	86689	630477	1.26 (0.97-1.63)			45.0
Waller et al, ⁴² 2007	104	434	572	2813	1.24 (0.97-1.57)			53.6
Watkins et al, ³⁷ 2003	2	24	36	248	0.54 (0.12-2.38)			1.4
Heterogeneity: $I^2 = 0.0\%$; $P = .54^{a}$; $P = .83^{b}$								
Overall (fixed-effects): $P = .02$	174	865			1.23 (1.03-1.47)		•	100.0
							:	

CENTRAL ILLUSTRATION Maternal Obesity and Risk of Specific Heart Defects

Persson, M. et al. J Am Coll Cardiol. 2019;73(1):44-53.

Allaitement

Approche humaine

Soignant / santé

•OMS : « un état de complet bien-être physique, mental et social, et ne consiste pas seulement en une absence de maladie ou d'infirmité ».

La réticence des soignants (Fat phobia (FPS) / grossophobie)

 Car difficultés médicalement techniquement matériel

Le vécu des patientes

- Information loyale sans stigmatisation
- Respect et bienveillance

Prise en charge générale avant, pendant et après la grossesse

Ching Wang Ma, Lancet Diabetes Endocrinol 2016